
Journal of Statistical Physics, Vol. 34, Nos. 5/6, 1984 

A Statistical Mechanics View of Quantum 
Chromodynamics: Lattice Gauge Theory 1 

John B. Kogut 2 

Received November 8, 1983 

Recent developments in lattice gauge theory are discussed from a statistical 
mechanics viewpoint. The basic physics problems of quantum chromodynamics 
(QCD) are reviewed for an audience of critical phenomena theorists. The idea of 
local gauge symmetry and color, the connection between statistical mechanics 
and field theory, asymptotic freedom and the continuum limit of lattice gauge 
theories, and the order parameters (confinement and chiral symmetry) of QCD 
are reviewed. Then recent developments in the field are discussed. These include 
the proof of confinement in the lattice theory, numerical evidence for confine- 
ment in the continuum limit of lattice gauge theory, and perturbative improve- 
ment programs for lattice actions. Next, we turn to the new challenges facing the 
subject. These include the need for a better understanding of the lattice Dirac 
equation and recent progress in the development of numerical methods for 
fermions (the pseudofermion stochastic algorithm and the microcanonical, mo- 
lecular dynamics equation of motion approach). Finally, some of the applica- 
tions of lattice gauge theory to QCD spectrum calculations and the thermody- 
namics of  QCD will be discussed and a few remarks concerning future direc- 
tions of the field will be made. 

KEY WORDS: Lattice gauge theory; quantum chromodynamics; confine- 
ment; computer simulations. 

1. LATTICE GAUGE THEORY AND QUANTUM 
CHROMODYNAMICS BACKGROUND 

1.1. Local Color Gauge Invariance 

The basic constructive dynamical principle of QCD is local color symme- 
try. Following Yang and Mills (I) in concept but in a different context, we 
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consider quark fields +i(x) having a color SU(3) index i. To think about 
color SU(3) as a local symmetry, we imagine independent color frames of 
reference at each point of space-time. The theory's action is required to be 
invariant under local rotations of these color frames. An SU(3) rotation 
matrix Up(x, y) will describe the relative orientation of local frames at 
points x and y, when they are parallel-transported along the path P. It is 
convenient to introduce an operator Go(x ) which rotates the local frames of 
reference by the space-time-dependent angle O(x), Go(x)= exp[iX~O~(x) 
/2]. From their geometric meaning the variables Up(x, y) transform under 
the local rotation operator G as 

Up(x, y) ---) G o (x)Up(x, y)Go-~ (y) (1.1) 

The Up(x, y) will be the basic degrees of freedom of the gauge theory and 
the action of the theory will be postulated to be invariant under the local 
color symmetry operations Eq. (1.1). This means that the action should be 
constructed from the quantities tr Uc(x), where c denotes a closed contour. 

To be more specific we parametrize Up(x, y) for infinitesimally nearby 
points x and y as 

U,(x) = exp(igA2X ~ dxJ2) (1.2) 

where X ~ are the eight Gell-Mann matrices of color SU(3) and A] can be 
identified, following the pioneering work of Yang and Mills (1) as the eight 
gluon fields. The rotation matrices for finite paths are then constructed, 

Up(x, y ) =  eexP(ig;AyX"dxJ2) (1.3) 

where P denotes a path-ordered product and the locally gauge invariant 
quantity used for the construction of the action is 

W(c) = trPexp(ig~A~X~dxJ2) (1.4) 

From this explicitly gauge-invariant perspective in which W(c) is the 
basic variable of the theory, one can study gauge theories as the theory of 
chiral fields defined on a base space consisting of all closed contours c. 
A. M. Polyakov (2) has pioneered this viewpoint and has sought closed 
solutions, in analogy to the solution of integrable two-dimensional chiral 
models, of pure gauge theories. Although this viewpoint has yet to attain its 
goal, it has led to new developments such as interesting connections to the 
theory of strings, (3) developed some time ago for high-energy phenomenol- 
ogy. 

Lattice gauge theory, as invented by A. M. Polyakov (2) and indepen- 
dently by K. G. Wilson (4) and introduced even earlier for simple gauge 
groups in a statistical mechanics setting by F. Wegner, (5) begins with 
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precisely this viewpoint. However, to make the base space of all contours 
enumerable and to make useful, local actions, it replaces space-time by a 
grid, a four-dimensional hypercubic lattice in Euclidean space. Gauge field 
variables are placed on links following Eq. (1.3) in the obvious fashion, 

U~,(n) = exp[ iagA;(n))t~/2] (1.5) 

where/~ labels the link direction, n is a quartet of integers labeling a site, a 
is the lattice spacing, and g is the gauge coupling at length scale a. The pure 
gluon action is then constructed from the simplest discrete versions of 
W(c), Eq. (1.4), the product of four Uu(n)'s around a closed path of four 
links, 

S = - ( 1 / g 2 ) ~  (tr UUUU + h.c.) (1.6) 

in an abbreviated but hopefully clear notation where the sum extends over 
all such paths, plaquettes, of the lattice. Equation (1.6) formulates SU(3) 
gauge field dynamics in a fashion that ordinary statistical mechanics 
methods can cope with. 

What are the major properties of the lattice formulation Eq. (1.6)? One 
can easily check that in a classical continuum limit (a-~ 0, g fixed with 
smooth fields), 

1 f ( g ; ;  )2d4x+ O(a ~) (1.7a) S ~  

where 

F~ = O~A, - O~A~, - gf~rA~,A, (1.7b) 

is the familiar gauge covariant field strength and f~pr are the structure 
constants of SU(3). This classical analysis can be improved through the 
addition of weak coupling quantum fluctuations. Then the quantized 
conventional continuum gauge field formulation is found with a lattice 
coupling constant g2 which must depend on a itself and which goes to zero 
as a ~ 0. This is asymptotic freedom--the field fluctuations on length scales 
near the ultraviolet cutoff a become free as a ~ 0. The approach to freedom 
is logarithmic, 

go 2 

g 2 ( a )  = l + (cg0 /2, )In(a0/a) ' c = 11/4,  (1 .8 )  

This is a central result needed to understand the continuum limit of the 
lattice theory. It means that g2 = 0 is an infrared unstable fixed point of the 
theory whose scaling laws can be obtained perturbatively. The resulting 
analytic control over the theory's continuum limit plays an important role 
in the estimates of quantitative properties of QCD, as will be illustrated in 
greater detail below. 
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Another important property of Eq. (1.6) is its computable strong 
coupling behavior. High,"temperature" expansions, i.e., in powers of 1/g 2, 
show that when a static quark and antiquark are separated a distance R in 
the pure gluon theory, a flux tube forms between them and gives rise to a 
linear confining potential, V(R)= oR. The coefficient o is the "string 
tension" of considerable fame in heavy quark phenomenology and relativis- 
tic string models of high-energy scattering. Its experimental value is ~/~ 

420 MeV. 

1.2, The Statistical Mechanics-Field Theoretic Dictionary 

It is clear from Eq. (1.6) that the lattice gauge theory formulation of 
pure glue casts the theory into the form of a four-dimensional statistical 
mechanics. The path integral of the lattice theory is 

and can be interpreted as a partition sum. The following correspondence 
between the two languages, some of which are obvious, follow: 

Statistical mechanics 
Energy 
Temperature 
Free energy density 
Correlation function 
Correlation length 

Field theory 
Action 
Coupling 
Vacuum energy density 
Propagator 
Reciprocal of the mass gap 

These correspondences will give us a useful perspective into the lattice 
theory and its continuum limit, relativistic QCD. 

1.3. Phases and Order Parameters of Lattice Gauge Theory 

Consider the question of confinement in the pure gluon theory. We 
want to calculate the heavy quark potential V(R) in a statistical mechanics 
setting. We need a gauge-invariant matrix element to describe this physical 
situation. Consider a closed world line of a quark shown in Fig. 1 and 
described as an external current J ] .  The closed path describes a simple 
thought experiment--separate a quark-antiquark pair adiabatically a dis- 
tance R, hold that configuration for a long time T >> R, then finally bring 
the pair back together again. The transition amplitude for this process in 
Euclidean space can be written as a path integral, 

(ile-Hrlf)=f [DA~lexp(--S + igfA~,j~d4x)/ f [Da, le - s  (1.10) 
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Fig. 1. A closed quark world line. 

using continuum field theory notation for convenience. Here ]i) and [f )  
are the "initial" and "final" configurations of the quarks--a  pair separated 
a distance R - - a n d  H is the Hamiltonian of the pure gluon field theory. 
Over the time interval T, the quarks are static so H is pure potential. Call it 
V(R). For pointlike quarks the right-hand side of Eq. (1.10) can also be 
simplified, 

e v(R~r=(trPexp( ig~A:Y~dxJ2))  (1.1 1) 

Or,  

V ( R ) = -  lim l l n ( W ( c ) )  (1.12) 
T ~  oo 

using the notation of Eq. (1.4) and identifying the closed contour C with 
Fig. 1. 

Equation (1.12) allows us to identify ( W ( C ) )  as the "order parameter" 
for confinement. (4) There are two natural alternative behaviors for the de- 
pendeffce of (W(C))  on the geometry of the contour C.  (5) First, (W(C))  
may fall to zero as the exponential of the minimal area enclosed by C, 

( W ( C ) ) ~ e  -~Rr (1.13a) 

which corresponds, using Eq. (1.12), to a confining heavy quark potential, 

V(R) = oR (1.13b) 

Another possibility is that (W(C))  falls off much more slowly, as t h e  
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perimeter of C, say. Then, for T >> R, 

(W(C))~e  -mr (1.14a) 

and 

V(R)-- m (l.14b) 

characteristic of quarks which propagate freely at large distances. 
The result Eq. (l.14b) is familiar to all, but linear confinement Eq. 

(1.13b) is not. By considering the high-temperature, i.e. strong coupling, 
expansion of (W(C) )  we see that the strongly disordered character of the 
link variables causes confinement. Begin with 

[ -  1 ~( t rUUUU+h.c . , ] /  f [dUle-S  (1.15, • exp - ~  

for rectangular contour of sides R and T, T >> R, on the lattice. Since 
f[dU~,(n)] U,(n) = 0 and f[clU,(n)] U]"/~(n) g~8(n) = �89 8~ 8p~, the first non- 
trivial term is found in the numerator of Eq. (1.15) in a 1/g 2 expansion 
when the exponential contributes a factor of - 1 / g2 t r  UUUU for each 
plaquette inside C. This is shown in Fig. 2 and produces 

(W(C))~(1/g2) RT= exp( - ln  g2. RT) (1.16a) 

So, 

V(R ) = oR (1.16b) 

Fig. 2. Strong coupling expansion of the Wilson loop correlation function. 
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with 

o = In g2 + . . . (1.16c) 

in units of the lattice spacing a. Higher-order corrections to Eq. (1.16c) can 
be obtained in a systematic fashion. 

The flux-tube picture of confinement follows from taking a fixed time 
slice of Fig. 2 and noting that the energy density and flux causing 
confinement occur in a thin tube between the quarks. Intriguing connec- 
tions with strong models of hadronic structure can also be drawn. 

It should be clear from these exercises that lattice gauge theory has 
much in common with the theory of two-dimensional fluctuating surfaces 
embedded in four dimensions. Recent research into the lattice theory and 
its mechanism of confinement has faced the issue of roughening of the 
flux-tube, (6) restoration of rotational symmetry in lattice calculations of 
heavy quark potential (v) and the character of the intrinsic width of the 
fluctuating surface. An intriguing result of this approach was the discovery 
of a universal 1 /R  term in the heavy quark potential, (8) 

w/12 
V ( R )  = oR - ~ + . . .  (1.17) 

which should be characteristic of any four-dimensional flux tube model of 
confinement in a relativistic theory. 

Now we turn to another order parameter of strong interactions-- 
dynamical mass generation of quarks. Since chiral symmetry and massless 
quarks may not be familiar to many statistical mechanics theorists, let me 
begin this discussion with a brief review of conventional QCD thoughts on 
the subject. Consider the theory with a doublet of massless quarks, t) = Q), 
where each quark comes in three colors, us,4 with i =  1, 2, and 3. The 
QCD action is, 

l f ( F X ~ ) 2 d 4 x + f ~ ( i j ~ + g A ~ X ~ ) ~ d 4 x  (1.18) S = - ~  

The absence of bare masses for the quarks implies that the left- (L) and 
right-handed (R) quark fields do not couple together in S and the theory is 
symmetric under SU(2)L | SU(2)R continuous transformations. The axial 
SU(2) is particularly interesting, 

(d) '=eivsT '"~  0 < 0 < 2 ~ r  (1.19) 

where T i is a generator of the SU(2) "flavor" symmetry. This is an exact 
global symmetry of the action for massless quarks. Phenomenology indi- 
cates, however, that this symmetry is spontaneously broken by the theory's 
vacuum. In this way a triplet of massless bosons, the pions 7r +, ~r ~ and w-,  
appear in the spectrum as the Nambu-Golds tone  bosons of the spontane- 
ously broken continuous symmetry. In the real world the small but finite 
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pion masses (m r ~ 135 MeV) are thought to reflect some explicit chiral 
symmetry breaking in the action itself (quark masses of several 5-7 MeV 
are favored phenomenologically--these are tiny masses on the scale of 
typical hadron masses of 1 GeV). In addition, the spontaneous breaking of 
the axial symmetry leads to successful low-energy scattering theorems, the 
analog of spin wave scattering results in the context of ferromagnets. In 
addition, there is an order parameter (f~b)=/: 0 and the appearance of a 
dynamically generated mass for the quarks themselves. These results are all 
favored by phenomenology and generic current algebra analyses of QCD. 

Later in this paper, after lattice fermions have been discussed, we shall 
return to the numerical evidence for the breakdown of chiral symmetry in 
the theory's continuum limit. In the continuum theory the appearance of a 
nonzero ( ~ )  is a nonperturbative e f f e c t - - ( ~ )  vanishes order by order in 
weak coupling expansions using Eq. (1.18) because of the algebraic symme- 
try Eq. (1.19)--which indicates that the quark-antiquark attraction is 
sufficient to cause condensation of pairs. There is an amusing, instructive, 
but very intuitive and informal connection between s-wave bound state 
formation in theories of confinement and chiral symmetry breaking. (9) 
Suppose that an s-wave bound state occurs in a theory due to a spin- 
independent, attractive force between quark-antiquark pairs. The confining 
force of lattice gauge theory is such a phenomenon. Suppose also that a 
simple two-body semiclassical approximation describes the s-wave bound 
state. Then, one can argue that quark-antiquark condensation must have 
occurred in the theory and (~+)  v a 0. To see this consider the bound state 
as depicted in Fig. 3. At a turning point in the quark's semiclassical 

) 
Fig. 3. A quark-antiquark bound state propagating in time. 
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trajectory, its momentum flips p--> - p ,  but its spin does not, s ~ s. There- 
fore, its chirality p.  s changes sign and we learn that its chirality is not a 
good quantum number and the symmetry of interest must be spontaneously 
broken. This little argument suggests that confining forces cause chiral 
symmetry breaking. This result has some support from computer simula- 
tions, as will be discussed later. 

2. RECENT DEVELOPMENTS IN GLUON THEORIES 

Our theoretical and numerical grasp of the pure gluon sector Eq. (!.6) 
is much firmer than our understanding of QCD with dynamical, light 
fermions. Therefore, let us review that aspect of QCD first and later discuss 
the problems with fermions. 

The pure gluon theory confines static quarks at strong coupling as 
discussed above. In fact, it has been proved that the lattice theory confines 
for all g2 different from zero. (m~ The proof relies on the non-Abelian 
character of the gauge group [the proof has been developed only for SU(2)] 
and uses Migdal-Kadanoff  renormalization group transformations to es- 
tablish bounds on (W(C)) .  These results in turn show that the string 
tension is nonzero for all g2. 

This result leaves us, however, with the hard problem of determining 
whether confinement is a property of the continuum limit of the lattice 
theory and whether the continuum limit yields a sensible, relativistic field 
theory. On these topics we have only numerical evidence, but the tentative 
answers are "yes" in both cases. Recall that asymptotic freedom governs 
the approach to the continuum limit. It defines the scaling laws of physical 
quantities for couplings g2 in the vicinity of the unstable free-field fixed 
point g2=  0. The scaling lows are obtained by a familiar argument. 
Suppose M is a physical mass of the theory. When calculated using lattice 
techniques it depends on both a and g2. However, it is renormalization 
group invariant, 

d M ( g Z ,  a) = 0 (2.1) 
da 

In addition, by dimensional analysis, 

M( g2, a) = 1 f(g2) (2.2) 
a 

These equations imply that 

f ' (  g) = - f (  g ) /  fi( g) 
where 

B(g)  = - a  dg 
da 

(2.3a) 

(2.3b) 
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is the Callan-Symanzik function. These equations mean that when one 
computes a physical quantity such as M on lattices of different spacings, 
the coupling g will have to be adjusted accordingly. But /~(g) can be 
computed in perturbation theory ,  

B(g) = - /~0g 3 - / ~ , g S -  + . . .  (2.4a) 

where 

(2.4b) 

for SU(N) gauge theories. (ll~ The famous minus signs in Eq. (2.4) indicate 
asymptotic freedom--as a ~ 0, g 2 ~  0 also. Using Eq. (2.3a) the scaling law 
for M(g2, a) becomes 

M'= c' .  !(p0 2)-B,/2  e-1/2B092[1 + O(g21] (2.5  
a 

where i labels various masses of the theory and the C i are pure numbers. 
There are several important features of this result. First, the appearance of 
a mass in the theory is a nonperturbative effect--M r depends on g2 with an 
essential singularity at g2 = 0. Second, mass ratios are pure numbers which 
are independent of g2. They are universal and depend only on the gauge 
group. The theory is very predictive! And third, the verification of the 
scaling law Eq. (2.5) is an essential ingredient in any good calculation of the 
continuum properties of the lattice theory. 

This last point consumes much of the attention of theorists who 
calculate the string tension of the SU(3) using computer simulation meth- 
ods. A rough sketch of the data from an 8 • 8 x 8 x 8 lattice is shown in 
Fig. 4. There is a narrow window in coupling g 2 ~  1 where small lattices 
appear to yield good estimates of physical quantities and their scaling laws. 
However, on such small lattices, systematic effects are always present (finite 
size problems), and the uncertainty in the overall mass scale of the theory is 
considerable. Workers in the field believe that systematic uncertainties of 
_+ 100% affect the present generation of computer simulations. 

Many other physical quantities have been estimated by these tech- 
niques. Pure gluonic energy levels ("glueballs") and quark model calcula- 
tions of meson and baryon masses have been made. All of these results are 
encouraging and interesting. However, researchers are now trying to deter- 
mine the reliability of their calculations, and are trying to put meaningful 
error estimates on their results. There are two problems here. First, the 
lattice itself--the fine grid work--is a distortion of space-time so correc- 
tions of O(a) exist. And second, the volume V of the lattice box is finite so 
corrections of O(V -1) must be expected. Both of these problems can be 
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Fig. 4. Monte Carlo data for the string tension. The straight line on the log plot represents 
the asymptotic freedom scaling law. 

deaIt with systematically--the O(a) corrections can be reduced by improv- 
ing the lattice action and the O(V-1 )  can be isolated by doing finite-size 
scaling studies. Let us discuss the O(a) corrections. Recall that classical 
analysis gave 

1 f(< )2d4x..] - O(a  2) (2.6) s ~  7 

as the lattice spacing a -~  0. A better fit to the continuum action can be 
made by adding irrelevant operators to S to reduce the O(a 2) error to 
O(a4). Consider a trivial free-field example before discussing the gauge 
theory. A free scalar field has the action 

_ ! ~(~)V%(~) So=  2 (2.7a) 

where ~ is defined on sites n and a discrete form of the second derivative is 

V2r = ~ [O(n+ ~) + O(n - ~) - 2O(n)] (2.7b) 

It is easy to now calculate the inverse propagator for the scalar excitation, 

4 4 (2.8) a T ~sin2(P~ a/2) :]9 2 - l a 2 ~  p~,+' '" 

and obtain the O(a 2) corrections to the continuum result. But if we add a 
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term O(a 2) to S, an irrelevant ~ 74 coupling, 

So--, So- a2E*(n)v4 (n) (2.9a) 

the inverse propagator becomes 

and a better fit to p2 is obtained. 
In lattice gauge theory one can add to the "four-spin" interaction term 

"six-spin" terms with appropriate weights so that 

Simp r~ --- ~2 ( E c4tr UUUU + 2 c6,itr UUUUUU) 

i f  o --~ ~ (F;,)2 d4x-[- O(a 4) (2.10) 

So, in addition to closed paths of length a • a • a • a, closed paths of six 
links appear in the lattice action and choosing the coefficients c 4 and c6, i (i 
labels the different types of 6-1ink closed paths) correctly the error is 
reduced to O(a4). This improvement program can also be carried out on 
the propagators of interest--correlation functions of two tr UUUU opera- 
tots--to improve mass spectrum calculations. 

We have illustrated these ideas in classical analysis and free-field cases. 
They also can be applied systematically to interacting theories. For asymp- 
totically free theories one can calculate the improvement coefficients c 4, 
C6,i, etc. order by order in perturbation theory. (12) The estimates given 
above are then altered by logarithms of a, O(a 2) ~ O(a21n a), for example. 
The logarithms occur because of asymptotic freedom, g 2  I / In ( I /a ) .  

This perturbative and systematic program for improving the lattice 
actions of asymptotically free theory has been set down for four- 
dimensional gauge theories, but has not been applied extensively. An 
impressive model calculation, the 0(3) Heisenberg magnet in two dimen- 
sions, was carried out through one-loop order and the theory's dynamically 
generated correlation length was computed by simulating the improved 
action. (13) Asymptotic freedom was found for the correlation length ~ in 
analogy to Fig. 4. In fact, the improved action gave the continuum scaling 
law even when ~ and a were comparable! This then permitted improved 
studies of ~ as a function of g2, the verification of dynamical mass 
generation, scaling, and the determination of the scale of ~ itself. It was 
found that previous more naive calculations of ~ underestimated it by 
factors of 3-4! The lesson learned was that although naive calculations 
gave good evidence for scaling, the scales of physical quantities were 
affected by irrelevant operators whose effects vanish slowly as a ~ 0 and 
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these effects shifted the curve of ~ vs. 1/g 2 leading to a poor determination 
of ~ itself. Some of the earlier calculations were quite nontrivial. They 
include simulations on 100 • 100 lattices,(14) a Monte Carlo renormaliza- 
tion group calculation, (15) and Hamiltonian strong coupling expansions. (16) 
The straightforward Monte Carlo simulations using the simplest nearest- 
neighbor coupled action, 

S = 2 Si" S j ,  S 2 = 1 (2 . l l )  
(ij) 

found a scaling region for ~ ~> 5a. Finite size effects are large when ~ ~ 20a 
on a 100 • 100 lattice, so the scaling window covered the region ~ = 
(5-20)a. With the improved action a much more impressive fit to asymp- 
totic freedom was achieved because ~ ~ a data were not affected signifi- 
cantly by the lattice grid. 

This result casts doubts on the reliability of the string tension measure- 
ments in SU(3) gauge theory. A good study with an improved action looks 
essential. Simply running simulations of the naive action on larger lattices 
may not expose the dangerous irrelevant operators which could be masking 
the scales. There is, in fact, evidence for such irrelevant operators in present 
computer simulations(lV)--recent simulations on larger lattices produce 
smaller values for ~/a--and in old Hamiltonian strong coupling expan- 
sions.(~s) 

This perturbative correction program removes a class of nonscaling 
effects in the vicinity of g2=  0. There may be other important nonper- 
turbative effects complicating the theory at finite g2. In SU(3) gauge theory 
there certainly are such problems--the crossover near g 2 ~  1 from strong 
coupling behavior to asymptotic freedom is very abrupt in the theory with 
the naive action and the theory's specific heat has a large, sharp peak in the 
vicinity of g2 ~ 1. The "cause" of this effect was explained through a study 
of a generalized naive model, a "mixed" model, (19) 

S = l_~g2 ~. trFUUUU+ l_~g2 ~. trAUUUU+h'c" (2.12) 

where tr F (trA) indicates a trace in the fundamental (adjoint) representation 
of the gauge group. For small fluctuations of the link variables U around 
the identity, the representation of the group does not affect the physics. 
However, in the intermediate and strong coupling regions g2 ~ 1, the global 
character of the group representation is important and the mixed model has 
some special features. Computer simulations revealed the phase diagram in 
the (gA, gr) plane shown in Fig. 5. The dotted lines indicate first-order 
transitions. Note that the line of first-order transitions terminates (at a 
critical point, presumably) near the "pure fundamental action" line and 
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Phase diagram for the "mixed" model. 

near g2F,.~ 1.0. So, the pure naive action model "almost" has a phase 
transition. This certainly affects the lattice theory's approach to the contin- 
uum limit. To evade the problem one should continue to work with the 
mixed model but choose a path to the continuum fixed point (gF 2 , g]) = 0 
which evades the nearby critical point, i.e., add some tr a UUUU with a 
negative weight to the naive action. The resulting mixed model could also 
be perturbatively improved in the vicinity of the fixed point. To my 
knowledge, such a thorough study has not been done yet. 

3. LATTICE FERMIONS: CONCEPTUAL ISSUES AND 
NUMERICAL METHODS 

Now we wish to put massless quarks into the model and discuss chiral 
symmetry and hadron mass spectroscopy. To begin we must consider a 
discrete form of the Dirac equation. The reader will quickly discover, if he 
tries this exercise, that it is deceptively tricky. In fact there are some precise 
NO-GO theorems on this subject. {2~ For example, you cannot 

1. describe a single left-handed quark with a "conventional" action 
on the lattice; 

2. nor can you describe a multiplet of quarks with all the continuous 
axial flavor symmetries with a "conventional" lattice action. 

The term "conventional" here includes the properties of locality and 
hermiticity and is essential in these results. {2~ 
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We can understand the origins of these limitations by considering 
several simple examples. (21~ Consider a one-dimensional spatial lattice in a 
temporal continuum. Place a two-component Dirac field ~(n) on each site 
n. The most naive discrete form of the Dirac equation would then be 

i ys[~(n  + 1) - ~(n - 1)] (3.1a) i~ (n )  = 2a 

to approximate the continuum Dirac equation, 

i ~ ( n ) =  - i y sOz~b(n) ,  y , =  ( ?  ~) (3.1b) 

To obtain the low-energy content of Eq. (3.10) we consider plane waves, 

t~ • ~-" e i ( - k n a +  E t ) x  + - (3.2a) 

and chiral eigenstates, 

YsX_+ = +X_+ (3.2b) 

Substituting into Eq. (3.1a) gives the energy-momentum relation, 

E = +_ s i n ( k a ) / a  

which is plotted in Fig. 6. So, the lattice regulator has produced low energy 
excitations at k a  ~ 0 as well as ka  ,~ +_ ~. The continuum limit of Eq. (3.1a) 
has two fermion species, each fermion accompanied by a partner with 
canceling chirality. This is the infamous problem of "species doubling." 

Let us consider two attempts to make a more suitable lattice Dirac 
equation. In the first, an illustration of a proposal by Wilson, we add an 

E 

~,5 .+1_~/~~/ "rr ~ ka 

Fig. 6. Dispersion relation for free fermions on a discrete space-continuum time lattice. 
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'I ~ 2Bla  

-r l  

E 

I 

) ka 

Fig. 7. Dispersion relation for free Wilson fermions. 

irrelevant term to the naive Hamiltonian (21) to raise the energy of  the E - k 
relation near k a  = +_ ~r, 

' ~ ~*~53z~+ ~a  ~ ~V2* (3.3) H - -  2~ 

The resulting energy-momentum relation is shown in Fig. 7. Now one 
species emerges in the continuum limit. However, we have paid a dear 
price. The irrelevant term in Eq. (3.3) breaks chiral symmetry ~k-~ eivs~ 
completely. This means that when interactions are added to the model, 
there is no symmetry in the Hamiltonian to prevent mass counterterms. 
Therefore, another term must be added to H to cancel off the induced mass 
term in order to have massless fermions in the Hamiltonian itself. This 
adjustment precludes a satisfactory first principles study of chiral symmetry 
and its possible spontaneous breakdown due to interactions in QCD. It also 
makes it difficult to study the hadron spectrum in the physically relevant 
light quark sector. 

A different approach to the problem thins the lattice degrees of 
freedom in order to produce but one species in the continuum limit. It 
places the upper component of ~(n), call it ~bl, on odd sites of the lattice 
and the lower component, ~b 2, on even sites. The Hamiltonian is then (2~) 

i 1) q~2*(n + 1)qq(n)l (3.4) H = 2-a Z [~ (n )~z (n  + - 
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One can then obtain the equations of motion for ~1 and ~2, reconstruct the 
Dirac equation, Eq. (3.16), and find one species in the continuum limit. 
What is the cost of this method? For a =/: 0 it only has discrete pieces of 
continous chiral symmetry (+--> 75~b, only) because upper and lower com- 
ponents of ~ are on different sites. This symmetry is sufficient, however, to 
forbid dynamically generated mass counterterms and it ensures the restora- 
tion of continuous chiral symmetry in the continuum limit. Therefore, the 
method is interesting for QCD although the strongly cutoff model has less 
symmetry than its continuum limit. 

The reader might reconsider the generic limitations of lattice fermions 
discussed at the opening of this section and consult the literature for proofs 
of the NO-GO theorems. They build upon the features found in the explicit 
exercises done above. 

Now let us discuss numerical methods for fermions. This is a difficult, 
unfamiliar subject for most statistical mechanics theorists because of the 
anticommuting property of Euclidean fermions. These variables are diffi- 
cult to deal with numerically because of the apparent nonlocal character of 
their anticommutation rules. Consider the action of lattice QCD written in 
a generic fashion, 

S= ~,,~[ D(U) + m]ij+j+ So(U ) (3.5) 
i j  

where S0(U) is the pure gluon action and the first term is the quark kinetic 
energy in a discrete form. The /~(U)is  a discrete form of the covariant 
derivative. The details of this form of the action depend on the lattice 
fermion method one uses. Our analysis will be generic, so k~ (U) will suffice 
for us. Of course, the quark hopping term must be locally gauge invariant. 
This is ensured by writing a string of U matrices between f and ~ so that 
color indices are all locally contracted into local color singlets [e.g., qT(n) 
U~(n)qJ(n + I*) is allowed]. 

How can we handle Eq. (3.35) numerically? The path integral reads 

z =f du (.)Hd ndCe-" (3.6) 

and it does not have a simple Statistical mechanics interpretation because 
the ~'s are anticommuting variables. However, since ~ and ~ enter S only 
quadratically we can integrate them out by standard methods, 

z =  f ~HdUl,(n)detNI[lO(U) +m]e-S~ (3.7) 

where the infamous fermion determinant has appeared raised to the power 
NU, the number of fermion species (flavors). Equation (3,7) can be written 
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in the form 

with 

Z = f  ~, dU~(n)e -s~ (3.8a) 

Ser f = So(U ) - Nftr ln[D(U) + m] (3.8b) 

Unfortunately, the tr in term in Eq. (3.8b) gives long-range couplings in the 
effective action, so it is difficult to deal with analytically. However, there is 
a direct, brute-force way to simulate Eq. (3.8b) which might permit numeri- 
cal studies of lattice QCD. (22) Suppose we study Eq. (3.8b) with a Monte 
Carlo method such as the Metropolis algorithm. Then we only need the 
differences of Ser f before and after a local change in the gauge field 
configuration. Since the matrix [ /? (U)+ rn] is sparse (only nearest neigh- 
bors are coupled), the difference of actions can be calculated with a local, 
stochastic algorithm. To be specific, change one link variable in the 
configuration (U}. Call the new configuration { U} and let the local 
change be small. Then the change in Ser f is 

So(U ) - So(U ) - ~.G~j(U) 6D(------U-U)0 ( U -  U) + O [ ( U -  U) 2] (3.9) 
~U 

where G/j is the fermion Green's function in the background gauge configu- 
ration { U}. This equation suggests an algorithm: 

1. Consider a fixed { U } and the boson action 

S(q)) = ~-~0" [ /? (U)  + m]ijO j (3.10a) 

Calculate Go.(U ) = (0"0]) for this model by ordinary Monte Carlo meth- 
ods. 

2. Update the gauge field with a small change { U} ~ ( U} using the 
action 

S(U)  = So(U) - 2 G~[/0(U) + n] 9 (3.10b) 
0 

3. Go to step 1 and repeat. 
In the limit of small changes { U) ---) ( U}, this method simulates Eq. (3.8b) 
exactly. Preliminary studies of it are fairly encouraging--one to two orders 
of magnitude more computing power than used for ordinary gauge theory 
simulations appear necessary. The method, however, has not been applied 
to QCD with light quarks yet, so its promise is not really verified. 

This is the pseudofermion method. It was introduced in Ref. 22, and 
the reader should consult the literature for more technically complete 
discussions. 

One of the many potential problems with the pseudofermion stochastic 
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method is the difficulty of doing error and convergence analysis for it. Most 
workers in the field believe that other methods are needed to solve the 
fermion simulation problem. A unique and very promising method based 
on the microcanonical ensemble is being developed and tested at this 
time. (23) In it classical equations of motion using ordinary boson variables 
in four Euclidean plus one time dimension are simulated. The ensemble 
averages of the canonical ensemble are replaced by time averages of the 
microcanonical ensemble. Some cleverness is needed in constructing the 
microcanonical action in order that it correspond to the canonical ensemble 
Eq. (3.8), and that has been done. The method's equations of motion are 
not hard to simulate numerically and work is underway on SU(2) and 
SU(3) gauge theories with four flavors of massless quarks in four dimen- 
sions. Since similations of equations of motion are subject to standard 
convergence criteria, the method is controlled and clear. Results of physical 
calculation are eagerly awaited. 

4. APPLICATIONS,  RESULTS, AND NEW DIRECTIONS 

Let me first review very briefly the type of work which has been done 
recently. There have been encouraging computer simulations of the hadron 
spectrum in the Nf-~O, or quenched approximation. (24) In this limit the 
infamous fermion determinant becomes an innocuous unity and calcula- 
tions are very simple. High-energy phenomenology suggests that the NI~ 0 
limit in which internal virtual quark loops are ignored may be a good 
qualitative guide to the low-energy mass spectrum. The Feynman diagrams 
the approximation includes in the calculation of a meson propagator are 
shown in Fig. 8. The quarks literally move in the gluon field theory and the 
absence of internal quark loops means that the fermions themselves do not 
feed into the dynamics. The computer calculation of the quark propagators 
needed in such a calculation of a composite meson propagator is not 
difficult. How good are the results for the ~r, O, ~0, e, P, & N, Z, etc? They 
all look encouraging, but are still under extensive study. Finite size effects, 
finite quark mass errors, etc. plague the present generation of calculations. 

Chiral symmetry has also been studied, and using a four-dimensional 
Euclidean version of the scheme Eq. (3.4) good evidence for spontaneous 
symmetry breaking has been found. (25~ The Goldstone-Nambu physical 
picture of the pion appears to result properly. 

QCD in the quenched approximation has also been studied in extreme 
environments--high temperatures and in dense nuclear matter. Decon- 
finement in SU(3) gauge theory and chiral symmetry restoration at T c 
~200 MeV has been discovered and the transitions are strongly first 
order. (26~ Large latent heats have been discovered and they may be relevant 
to the early life of the universe and they may be explored in heavy-ion 
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Fig. 8. 

X 

0 
Feynman diagrams contributing to the quenched calculation of a meson propagator. 

collisions. Chiral symmetry restoration in dense nuclear matter has also 
been seen, (27) but quantitative studies are lacking. The physics of extreme 
environments is a particularly attractive scene for lattice gauge theory. The 
quenched approximation is quite questionable here and much work is being 
expended to improve these calculations. 

Finally a few words about future directions. It would be interesting to 
study symmetry breaking in grand unified theories. Realistic models are 
probably beyond our reach because of the NO-GO theorems on lattice 
fermion methods. Nonperturbative effects in supersymmetric models repre- 
sent new ground which lattice gauge theory might attack. Lattice super- 
symmetry in various forms is being studied by several groups. On the 
analytic front, special methods exist for N--~ oe theories (N = number of 
colors) and elegant connections with string models appear possible. 

Lattice gauge theory should continue as a useful method for studying 
field theories for the next few years. 
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